Abstract

Beta-adrenergic receptors were characterized in human fat cell membranes using 125I-labeled cyanopindolol (125I-labeled CYP) and highly selective beta 1-antagonists. The iodinated radioligand bound saturably and specifically to a single class of high affinity binding sites. The number of binding sites determined with 125I-labeled CYP closely agreed with that determined with two other tritiated radioligands: [3H]dihydroalprenolol and [3H]CGP-12,177. Since 125I-labeled CYP does not discriminate between beta 1- and beta 2-adrenoceptors, the densities of the two receptor subtypes were determined from the competition curves of 125I-labeled CYP by highly selective beta 1-antagonists (bisoprolol, ICI-89,406, CGP-20,712A, and LK-204,545). Moreover, in order to enable correlation with binding data, the regulation of adenylate cyclase activity and of lipolysis was tested with various beta-agonist and antagonist compounds. The results obtained on fat cell membranes from abdominal subcutaneous adipose tissue demonstrated the following. 1) 125I-labeled CYP represents a valuable tool for the quantification and the delineation of beta-receptor subtypes. 2) The presence of sodium ions in binding buffers causes a modification of the affinity of beta-sites for some beta-antagonists. 3) The human fat cell beta adrenergic receptor population defined by nonselective radioligands is composed of two subtypes that can be interpreted in terms of classic beta 1- and beta 2-adrenergic receptor subtypes as assessed by competition studies with highly selective antagonists; beta 2-sites are predominant (60-70% of 125I-labeled CYP sites) in the adipocytes of slightly overweight women. 4) Results support the idea that beta 1- as well as beta 2-adrenergic receptors are coupled with adenylate cyclase and involved in the induction of lipolysis. 5) The results focus on the interest in some beta 2-agonist drugs (zinterol, clenbuterol) as partial inductors of lipolysis, with the lipolytic efficacies of these compounds being well correlated with their efficacies at 125I-labeled CYP sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call