Abstract

BackgroundAlthough it is recognized that ozone causes acute and chronic health effects and that even trace amounts of ozone are potentially deleterious to human health, information about global and local exposures to ozone in different indoor environments is limited. To synthesize the existing knowledge, this review analyzes the magnitude of and the trends in global and local exposure to ozone in schools and offices and the factors controlling the exposures. MethodsIn conducting the literature review, Web of Science, SCOPUS, Google Scholar, and PubMed were searched using 38 search terms and their combinations to identify manuscripts, reports, and directives published between 1973 and 2018. The search was then extended to the reference lists of relevant articles. ResultsThe calculated median concentration of ozone both in school (8.50 μg/m3) and office (9.04 μg/m3) settings was well below the WHO guideline value of 100 μg/m3 as a maximum 8 h mean concentration. However, a large range of average concentrations of ozone was reported, from 0.8–114 μg/m3 and from 0 to 96.8 μg/m3 for school and office environments, respectively, indicating situations where the WHO values are exceeded. Outdoor ozone penetrating into the indoor environment is the main source of indoor ozone, with median I/O ratios of 0.21 and 0.29 in school and office environments, respectively. The absence of major indoor ozone sources and ozone sinks, including gas-phase reactions and deposition, are the reasons for lower indoor than outdoor ozone concentrations. However, there are indoor sources of ozone that are of significance in certain indoor environments, including printers, photocopiers, and many other devices and appliances designed for indoor use (e.g., air cleaners), that release ozone either intentionally or unintentionally. Due to significantly elevated outdoor ozone concentrations during summer, summer indoor concentrations are typically elevated. In addition, the age of a building and various housing aspects (carpeting, air conditioning, window fans, and window openings) have been significantly associated with indoor ozone levels. ConclusionsThe existing means for reducing ozone and ozone reaction products in school and office settings are as follows: 1) reduce penetration of outdoor ozone indoors by filtering ozone from the supply air; 2) limit the use of printers, photocopiers, and other devices and appliances that emit ozone indoors; 3) limit gas-phase reactions by limiting the use of materials and products (e.g. cleaning chemicals) the emissions of which react with ozone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.