Abstract
It has been hypothesized that human mercury (Hg) exposure via fish consumption will increase with increasing acidic deposition. Specifically, acidic deposition leads to reduced lake and alkalinity, and increased sulphate ion concentration ([SO4 2−]), which in turn should cause increased Hg levels in fish, ultimately resulting in increased human Hg exposure via fish consumption. Our empirical test of this hypothesis found it to be false. We specifically examined Hg levels in the hair of Ontario Amerindians, who are known consumers of fish from lakes across the province, and observed a weak negative association with increasing sulphate deposition. An examination of Hg levels in lake trout, northern pike and walleye, three freshwater fish species commonly consumed by Ontario Amerindians, found a similar weak negative association with increasing sulphate deposition. Further analysis of these fish data found that fish [Hg] was most significantly (positively) associated with lake water concentrations of dissolved organic carbon (DOC), not pH, alkalinity or [SO4 2−]. Lake DOC levels are lower in regions of greater acidic deposition. We propose an alternate hypothesis whereby human Hg exposure declines with increasing acidic deposition. In particular, we propose that increasing sulphate deposition leads to reduced lake DOC levels, which in turn leads to lower Hg in fish, ultimately reducing human Hg exposure via fish consumption.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have