Abstract

Humans can accurately estimate and track object motion, even if it accelerates. Research shows that humans exhibit superior estimation and tracking performance for descending (falling) than ascending (rising) objects. Previous studies presented ascending and descending targets along the gravitational and body axes in an upright posture. Thus, it is unclear whether humans rely on congruent information between the direction of the target motion and gravity or the direction of the target motion and longitudinal body axes. Two experiments were conducted to explore these possibilities. In Experiment 1, participants estimated the arrival time at a goal for both upward and downward motion of targets along the longitudinal body axis in the upright (both axes of target motion and gravity congruent) and supine (both axes incongruent) postures. In Experiment 2, smooth pursuit eye movements were assessed while tracking both targets in the same postures. Arrival time estimation and smooth pursuit eye movement performance were consistently more accurate for downward target motion than for upward motion, irrespective of posture. These findings suggest that the visual experience of seeing an object moving along an observer's leg side in everyday life may influence the ability to accurately estimate and track the descending object's motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.