Abstract
Emotion recognition is a hot research in modern intelligent systems. The technique is pervasively used in autonomous vehicles, remote medical service, and human–computer interaction (HCI). Traditional speech emotion recognition algorithms cannot be effectively generalized since both training and testing data are from the same domain, which have the same data distribution. In practice, however, speech data is acquired from different devices and recording environments. Thus, the data may differ significantly in terms of language, emotional types and tags. To solve such problem, in this work, we propose a bimodal fusion algorithm to realize speech emotion recognition, where both facial expression and speech information are optimally fused. We first combine the CNN and RNN to achieve facial emotion recognition. Subsequently, we leverage the MFCC to convert speech signal to images. Therefore, we can leverage the LSTM and CNN to recognize speech emotion. Finally, we utilize the weighted decision fusion method to fuse facial expression and speech signal to achieve speech emotion recognition. Comprehensive experimental results have demonstrated that, compared with the uni-modal emotion recognition, bimodal features-based emotion recognition achieves a better performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have