Abstract
The ability to optimize behavioral performance when confronted with continuously evolving environmental demands is a key element of human cognition. The dorsal anterior cingulate cortex (dACC), which lies on the medial surface of the frontal lobes, plays an important role in regulating cognitive control. Hypotheses regarding its function include guiding reward-based decision making1, monitoring for conflict between competing responses2, and predicting task difficulty3. Precise mechanisms of dACC function remain unknown, however, due to the limited number of human neurophysiological studies. Here we demonstrate with functional imaging and human single-neuron recordings that the firing of individual dACC neurons encodes current and recent cognitive load. We show that the modulation of current dACC activity by previous activity produces a behavioral adaptation that accelerates reactions to cues of similar difficulty as previous ones, and retards reactions to cues of differing difficulty. Furthermore, this conflict adaptation, or Gratton effect2,4, is abolished after surgically targeted dACC ablation. Our results demonstrate that the dACC provides a continuously updated prediction of expected cognitive demand to optimize future behavioral responses. In situations with stable cognitive demands, this signal promotes efficiency by hastening responses, but in situations with changing demands, it engenders accuracy by delaying responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.