Abstract

In this study hierarchically-structured latex polymer coatings and self-supporting films were characterised and their suitability for cell growth studies was tested with Human Dermal Fibroblasts (HDF). Latex can be coated or printed on rigid or flexible substrates thus enabling high-throughput fabrication. Here, coverslip glass substrates were coated with blends of two different aqueous latex dispersions: hydrophobic polystyrene (PS) and hydrophilic carboxylated acrylonitrile butadiene styrene (ABS). The nanostructured morphology and topography of the latex films was controlled by varying the mixing ratio of the components in the latex blend. Thin latex-coatings retain high transparency on glass allowing optical and high resolution imaging of cell growth and morphology. Compared to coverslip glass surfaces and commercial well-plates HDF cell growth was enhanced up to 150-250 % on latex surfaces with specific nanostructure. Growth rates were correlated with selected roughness parameters such as effective surface area (Sq), RMS-roughness (Sdr) and correlation length (Scl37). High-resolution confocal microscopy clearly indicated less actin stress-fibre development in cells on the latex surface compared to coverslip glass. The results show that surface nanotopography can, by itself, passively modulate HDF cell proliferation and cytoskeletal architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.