Abstract

Background. Pulmonary xenotransplantation is not possible because of hyperacute lung injury, the pathogenesis of which is unknown. This study evaluates complement-dependent pathways of pulmonary injury during heterologous perfusion of swine lungs. Methods. Lungs from unmodified swine and swine expressing human decay-accelerating factor and human CD59 (hDAF/hCD59 swine) were perfused with either human plasma or baboon blood. Pulmonary vascular resistance and static pulmonary compliance were measured serially, and swine lung tissue were examined by light microscopy. Complement activation was assessed by serial measurements of baboon plasma C3a-desArg concentrations. Results. Perfusion of unmodified swine lungs with human plasma and baboon blood resulted in hyperacute lung injury within minutes of perfusion. However, function was preserved in swine lungs expressing human decay-accelerating factor and human CD59. In both study groups, xenogeneic perfusion with baboon blood resulted in at least a sevenfold increase in plasma C3a-desArg levels suggesting transient activation of complement. Conclusions. Lungs from swine expressing human decay-accelerating factor and human CD59 were resistant to injury during perfusion with human plasma and baboon blood, indicating that complement mediated some of the features of xenogeneic acute lung injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.