Abstract

In the past decade, grating-based x-ray multi-contrast imaging has demonstrated potential advantages for breast imaging, including reduced anatomical noise, sharper tumor boundary and improved visibility of microcalcifications. However, most of the studies have been performed on benchtop-based systems. The experimental conditions including the dose, scanning time and system geometry may not meet clinical standards. Therefore, to evaluate true clinical benefits of grating-based multi-contrast breast imaging, in-vivo imaging should be performed, which requires a human-compatible system. The purpose of this paper is to report the development of a human-compatible prototype multi-contrast imaging system. In particular, this work focuses on several key challenges in building the prototype system. Regarding the challenge of patient safety, the mean glandular dose (MGD) and the scatter radiation were evaluated for the prototype system. Regarding the challenge of the limited field-of-view (FOV), the origin of the problem and corresponding technical solutions are presented. Finally, imaging results of several test phantoms are presented and strategies to improve the image quality are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call