Abstract

Pathophysiological investigation of CNS-related diseases, such as epilepsy or neurodegenerative disorders, largely relies on histological studies on human post mortem tissue, tissue obtained by biopsy or resective surgery and on studies using disease models including animal models, heterologous expression systems or cell culture based approaches. However, in general it remains elusive to what extent results obtained in model systems can be directly translated to the human brain, calling for strategies allowing validation or even primary investigation in live human CNS tissue. In the work reported here, we prepared human organotypic slice cultures from access tissue of resective epilepsy surgery. Employing different culture conditions, we systematically compared artificial culturing media versus human cerbrospinal fluid (hCSF) obtained from patients with normal pressure hydrocephalus (NPH). Presented data demonstrates sustained cortical neuronal survival including not only maintenance of typical cellular electrophysiological properties and activity, such as robust action potential generation and synaptic connectivity, but also preservation of tonic and phasic network activity up to several weeks in vitro. As clearly delineated by immunocytochemistry, single cell patch clamp and extracellular recordings, we find that in contrast to artificial culturing media, hCSF significantly enhances neuron viability and maintenance of network activity.

Highlights

  • Investigation of pathophysiological mechanisms of human neurodegenerative and other central nervous system (CNS)-related diseases as well as the development of new therapeutic avenues in first line relies on studies involving model systems that include cell culture systems and animal models

  • We here demonstrate that long-term neocortical neuronal viability and robust electrophysiological single cell and network function can be preserved in human organotypic cortical slice cultures by using human cerebrospinal fluid as culturing medium

  • In all tested slices the concentration of potassium in the recording artificial cerebrospinal fluid was increased to 8 mM to facilitate spontaneous neuronal activity (Fig. 1C)

Read more

Summary

Introduction

Investigation of pathophysiological mechanisms of human neurodegenerative and other central nervous system (CNS)-related diseases as well as the development of new therapeutic avenues in first line relies on studies involving model systems that include cell culture systems and animal models. Recent work by another group demonstrated that such processes potentially could be ameliorated using optimized complex defined artificial culturing media, enabling at least partial preservation of characteristic neuronal morphology and importantly pathological electrophysiological activities of mainly but not exclusively subcortical limbic structures (hippocampus, subiculum) in organotypic cultures of adult human tissue[17] Building on these data, we here demonstrate that long-term neocortical neuronal viability and robust electrophysiological single cell and network function can be preserved in human organotypic cortical slice cultures by using human cerebrospinal fluid as culturing medium. These cultures could serve as a platform enabling direct validation of data obtained in model systems including but not limited to ES-/iPS technology, rodent primary neuronal cultures, organotypic slice cultures, and in vivo approaches or even non-mammalian heterologous expression systems

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.