Abstract

Features such as estimated delivery time windows and live tracking of shipments play a key role in improving the customer experience in last-mile delivery. The building blocks for enabling these features are reliable knowledge about the expected order of deliveries in a tour and precise delivery time window predictions. For Deutsche Post’s parcel delivery service in Germany, we developed a courier-centric routing algorithm and a corresponding state-of-the-art machine learning model for delivery time window predictions. The routing algorithm combines operations research with statistics and machine learning to implicitly gather and use the tacit knowledge of our experienced couriers within the tour generation. This is achieved by deducing and selecting appropriate precedence constraints from historical delivery data. This novel combination of optimization with data-driven constraints enabled us to provide custom routes to the individual couriers. It proved to be a main driver allowing us to provide accurate delivery time window predictions and live tracking of shipments. Our solution is used by Deutsche Post to plan the daily routes of couriers to the approximately 13,000 parcel delivery districts in Germany as well as to provide live tracking and estimated delivery time windows for 1.6 million parcels each day. History: This paper has been accepted for the INFORMS Journal on Applied Analytics Special Issue—2022 Daniel H. Wagner Prize for Excellence in the Practice of Advanced Analytics and Operations Research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.