Abstract

SummaryHuman activities have increased reactive nitrogen (Nr) input to terrestrial ecosystems compared with the pre-industrial era. However, the fate of such Nr input remains uncertain, leading to missing sink of the global nitrogen budget. By synthesizing records of Nr burial in sediments from 303 lakes worldwide, here we show that 9.6 ± 1.1 Tg N year−1 (Tg = 1012 g) accumulated in inland water sediments from 2000 to 2010, accounting for 3%–5% of global Nr input to the land from combined natural and anthropogenic pathways. The recent Nr burial flux doubles pre-industrial estimates, and Nr burial rate significantly increases with global increases in human population and air temperature. Sediment ratios of C:N decrease after 1950 while N:P ratios increase over time due to increasingly elevated Nr burial and other related processes in lakes. These findings imply that Nr burial in lakes is overlooked as an important global sink of Nr input to terrestrial ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.