Abstract
Physiologically relevant steroid 5α-reductase (SRD5A) activity that is essential for dihydrotestosterone (DHT) biosynthesis in human castration-resistant prostate cancer (CRPC) has not been fully characterized yet. In this study to ascertain the potential SRD5A activity, we cultured two human CRPC cell lines, C4-2 and C4-2AT6, with the steroid precursor: 13C-[2,3,4]-androstenedione (13C-Adione), and analyzed the sequential biosynthesis of 13C-[2,3,4]-testosterone (13C-T) and 13C-[2,3,4]-DHT (13C-DHT) by liquid chromatography/mass spectrometry (LC/MS/MS). The 13C-DHT/13C-T concentration ratio detected by LC/MS/MS in C4-2AT6 cells appeared to reflect the SRD5A activity. The ratio in C4-2AT6 was significantly lower than that in C4-2. An increased concentration of DHT did not have a positive effect on cell proliferation, rather it exhibited inhibitory effects. 5α-reductase inhibitors did not have any inhibitory effect at clinically achievable concentrations. These results indicate that CRPC cells may have an unknown regulation system to protect themselves from an androgenic suppressive effect mediated by SRD5A activity.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have