Abstract

Osteosarcoma is the most common highly malignant bone tumor with primary appearance during the second and third decade of life. It is associated with a high risk of relapse, possibly resulting from a developed resistance to chemotherapy agents. As a means to overcome osteosarcoma tumor cell resistance and/or to sensitize tumor cells to currently used chemotherapeutic treatments, we examined the role of human apurinic endonuclease 1 (APE1) in osteosarcoma tumor cell resistance and prognosis. Sixty human samples of archived conventional (intramedullary) osteosarcoma were analyzed. APE1 protein was elevated in 72% of these tissues and among those with a known clinical outcome, there was a significant correlation between high APE1 expression levels and reduced survival times. The remaining 28% of samples showed low expression of APE1. Given that APE1 was overexpressed in osteosarcoma, we decreased APE1 levels using silencing RNA (siRNA) targeting technology in the osteosarcoma cell line, human osteogenic sarcoma (HOS), to enhance chemo- and radiation sensitivity. Using siRNA targeted technology of APE1, protein levels were reduced by more than 90% within 24 hours, remained low for 72 hours, and returned to normal levels at 96 hours. There was also a clear loss of APE1 endonuclease activity following APE1-siRNA treatment. A decrease in APE1 levels in siRNA-treated human osteogenic sarcoma cells led to enhanced cell sensitization to the DNA damaging agents: methyl methanesulfonate, H(2)O(2), ionizing radiation, and chemotherapeutic agents. The findings presented here have both prognostic and therapeutic implications for treating osteosarcoma. The APE1-siRNA results demonstrate the feasibility for the therapeutic modulation of APE1 using a variety of molecules and approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.