Abstract

Human activity recognition aims to identify the activities carried out by a person. Recognition is possible by using information that is retrieved from numerous physiological signals by attaching sensors to the subject’s body. Lately, sensors like accelerometer and gyroscope are built-in inside the Smartphone itself, which makes activity recognition very simple. To make the activity recognition system work properly in smartphone which has power constraint, it is very essential to use an optimization technique which can reduce the number of features used in the dataset with less time consumption. In this paper, we have proposed a dimensionality reduction technique called fast feature dimensionality reduction technique (FFDRT). A dataset (UCI HAR repository) available in the public domain is used in this work. Results from this study shows that the fast feature dimensionality reduction technique applied for the dataset has reduced the number of features from 561 to 66, while maintaining the activity recognition accuracy at 98.72% using random forest classifier and time consumption in dimensionality reduction stage using FFDRT is much below the state of the art techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.