Abstract

AbstractThe Hubble Space Telescope for the first time enables optical and UV images of jets to be obtained with spatial resolution comparable to radio interferometric techniques. Because synchrotron emission at these wavelengths is a diagnostic of particles several orders of magnitude higher in energy and correspondingly shorter in lifetime than those probed by radio, the sites of particle acceleration may be more readily identified in the optical and UV. Short-lifetime optical synchrotron emission in the SE inner radio lobe of M87 argues strongly for the presence of an invisible counterjet. A detailed comparison of HST and VLA images of the M87 jet shows there are very strong similarities in overall morphology, but that there are also significant differences. The optical and UV radiation is more localized within the knots than the radio emission and appears more confined toward the jet center. These differences may arise from localized shocks, sited at the optical knots with diffusion of relativistic particles away from those knots, or else they may be due to nonuniform magnetic fields and distributed acceleration processes. The UV fluxes of the knots are consistent with a single power law from optical to X-ray. Optical jets in other radio galaxies show diverse properties—the jet of PKS 0521–36 is smoothly resolved by HST while that of 3C 66B shows previously unsuspected filmentary structure. Likewise, the jet of 3C 273 shows newly observed optical filaments and an intensity distribution quite unlike that of the radio emission. Like M87, the optical jet of 3C 273 is narrower than the radio jet. The serendipitous discovery of a new optical synchrotron jet in 3C 264 suggests that optical jets may be relatively common.Subject heading: galaxies: jets

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call