Abstract

Herpes simplex virus type-1 (HSV-1) induces new lymphatic vessel growth (lymphangiogenesis) in the cornea via expression of vascular endothelial growth factor by virally infected epithelial cells. Here, we extend this observation to demonstrate the selective targeting of corneal lymphatics by HSV-1 in the absence of functional type I interferon (IFN) pathway. Specifically, we examined the impact of HSV-1 replication on angiogenesis using type I IFN receptor deficient (CD118(-/-)) mice. HSV-1-induced lymphatic and blood vessel growth into the cornea proper was time-dependent in immunocompetent animals. In contrast, there was an initial robust growth of lymphatic vessels into the cornea of HSV-1-infected CD118(-/-)mice, but such vessels disappeared by day 5 postinfection. The loss was selective as blood vessel integrity remained intact. Magnetic resonance imaging and confocal microscopy analysis of the draining lymph nodes of CD118(-/-) mice revealed extensive edema and loss of lymphatics compared with wild-type mice. In addition to a loss of lymphatic vessels in CD118(-/-) mice, HSV-1 infection resulted in epithelial thinning associated with geographic lesions and edema within the cornea, which is consistent with a loss of lymphatic vasculature. These results underscore the key role functional type I IFN pathway plays in the maintenance of structural integrity within the cornea in addition to the anti-viral characteristics often ascribed to the type I IFN cytokine family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.