Abstract

Convergence of two-stage iterative methods for the solution of linear systems is studied. Convergence of the non-stationary method is shown if the number of inner iterations becomes sufficiently large. TheR 1-factor of the two-stage method is related to the spectral radius of the iteration matrix of the outer splitting. Convergence is further studied for splittings ofH-matrices. These matrices are not necessarily monotone. Conditions on the splittings are given so that the two-stage method is convergent for any number of inner iterations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.