Abstract
Classical iterative methods for the solution of algebraic linear systems of equations proceed by solving at each step a simpler system of equations. When this system is itself solved by an (inner) iterative method, the global method is called a two-stage iterative method. If this process is repeated, then the resulting method is called a nested iterative method. We study the convergence of such methods and present conditions on the splittings corresponding to the iterative methods to guarantee convergence forany number of inner iterations. We also show that under the conditions presented, the spectral radii of the global iteration matrices decrease when the number of inner iterations increases. The proof uses a new comparison theorem for weak regular splittings. We extend our results to larger classes of iterative methods, which include iterative block Gauss-Seidel. We develop a theory for the concatenation of such iterative methods. This concatenation appears when different numbers of inner interations are performed at each outer step. We also analyze block methods, where different numbers of inner iterations are performed for different diagonal blocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Numerische Mathematik
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.