Abstract
Botulinum and tetanus neurotoxins are the most toxic substances known and form the growing family of clostridial neurotoxins. They are composed of a metalloprotease light chain (L), linked via a disulfide bond to a heavy chain (H). H mediates the binding to nerve terminals and the membrane translocation of L into the cytosol where their substrates, the three SNARE proteins, are localised. L translocation is accompanied by unfolding, and it has to be reduced and reacquire the native fold to exert its neurotoxicity. The Thioredoxin reductase-Thioredoxin system is responsible for the reduction, but it is unknown whether the refolding of L is spontaneous or aided by host chaperones. Here we report that geldanamycin, a specific inhibitor of heat shock protein 90, hampers the refolding of L after membrane translocation and completely prevents the cleavage of SNAREs. We also found that geldanamycin strongly synergises with PX-12, an inhibitor of thioredoxin, suggesting that the processes of L chain refolding and interchain disulfide reduction are strictly coupled. Indeed we found that the heat shock protein 90 and the Thioredoxin reductase-Thioredoxin system physically interact on synaptic vesicle where they orchestrate a chaperone-redox machinery which is exploited by clostridial neurotoxins to deliver their catalytic part into the cytosol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.