Abstract

As a highly infectious pathogen, Bombyx mori nuclear polyhedrosis virus (BmNPV) has a high lethality rate in silkworm. Our previous study have confirmed that Hsp90 plays a positive role in BmNPV proliferation and Hsp90 inhibitor, geldanamycin (GA) can decrease the replication of BmNPV in vitro. However, its molecular mechanism is not fully understood. In the present study, first, we found that GA could inhibit the proliferation of BmNPV in a dose-dependent manner and delay the pathogenesis of BmNPV in vivo possibly by altering the transcript level of genes associated with cell apoptosis and immune pathways. Furthermore, by immunoprecipitation (IP) and mass spectrometry analysis, we identified a series of proteins potentially interacting with Hsp90 including two BmNPV encoded proteins. Subsequently, by Co-IP we confirmed the interaction between BmActin-4 and BmHsp90. Knocking down Bmhsp90 by small interfering RNA inhibited the protein expression level of BmActin-4. Over-expression of Bmactin-4 promoted the replication of BmNPV whereas knockdown of Bmactin-4 suppressed BmNPV replication. In addition, decrease of the transcript level of Bmhsp90 in Bmactin-4 knocking down BmN cells was also detected. Taken together, BmHsp90 can interact with BmActin-4 and promote its expression, thereby promoting BmNPV proliferation. Our findings may enrich the molecular mechanism of Hsp90 for promoting virus proliferation and provide new clues to elucidate the interact mechanism between silkworm and virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call