Abstract

Nucleotide sequence analysis of the Bombyx mori nuclear polyhedrosis virus (BmNPV) genome revealed the existence of a gene homologous to the p35 gene of Autographa californica NPV (AcNPV), which has been shown to prevent virus-induced apoptosis. The BmNPV p35 gene showed 96.1% nucleotide and 89.6% predicted amino acid sequence identity to the AcNPV p35 gene. A mutant BmNPV (BmP35Z) lacking a functional p35 gene induced apoptosis-like cell degradation in infected BmN cells. However, unlike the p35-deleted AcNPV mutant (vAcAnh), BmP35Z replicated normally and produced polyhedral inclusion bodies. The patterns of protein synthesis and the percentages of viable BmN cells remaining following infection with either wild-type BmNPV or BmP35Z were nearly identical. BmP35Z also replicated in silkworm larvae without showing any apparent apoptotic response in infected hemocytes, fat body, or other tissues. Time to death of larvae infected with BmP35Z was similar to that for wild-type-infected larvae, and significant numbers of polyhedral inclusion bodies were produced. These results indicate that viral factors (or genes) other than p35 or host cell factors play a role in inducing, accelerating, or interfering with apoptotic processes. The evolution of baculovirus genomes is also discussed with reference to comparative analysis of the p35 and p94 gene sequences. The p94 gene is found immediately upstream of p35 in AcNPV; in BmNPV, however, the p94 gene was nearly completely missing, presumably because of large deletions in a BmNPV ancestor virus having a gene similar to the AcNPV p94 gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call