Abstract
Transposable elements (TEs) have been recognized as potentially powerful drivers of genomic evolutionary change, but factors affecting their mobility and regulation remain poorly understood. Chaperones such as Hsp90 buffer environmental perturbations by regulating protein conformation, but are also part of the PIWI-interacting RNA pathway, which regulates genomic instability arising from mobile TEs in the germline. Stress-induced mutagenesis from TE movement could thus arise from functional trade-offs in the dual roles of Hsp90. We examined the functional constraints of Hsp90 and its role as a regulator of TE mobility by exposing nematodes (Caenorhabditis elegans and Caenorhabditis briggsae) to environmental stress, with and without RNAi-induced silencing of Hsp90. TE excision frequency increased with environmental stress intensity at multiple loci in several strains of each species. These effects were compounded by RNAi-induced knockdown of Hsp90. Mutation frequencies at the unc-22 marker gene in the offspring of animals exposed to environmental stress and Hsp90 RNAi mirrored excision frequency in response to these treatments. Our results support a role for Hsp90 in the suppression of TE mobility, and demonstrate that that the Hsp90 regulatory pathway can be overwhelmed with moderate environmental stress. By compromising genomic stability in germline cells, environmentally induced mutations arising from TE mobility and insertion can have permanent and heritable effects on both the phenotype and the genotype of subsequent generations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have