Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.

Highlights

  • Molecular chaperones represent a large group of proteins that are essential for maintaining cellular homeostasis and survival

  • The cellular chaperones Hsc70, inducible Hsp70 (iHsp70) and Grp78 were enhanced in the nuclear envelope (NE)-associated replication and transcription compartments (RTCs) of reactivated HEK-293T rKSHV.219 cells

  • Western blot analysis of the NE preparations demonstrated an enrichment of nucleoporins (Nups), lamins and histones and a loss of cytoplasmic (GAPDH) and nucleolar (B-23, C-23) proteins compared with whole cell (WC) lysates (Fig 1)

Read more

Summary

Introduction

Molecular chaperones represent a large group of proteins that are essential for maintaining cellular homeostasis and survival. The functional importance of the HSP70 and HSP90 families of molecular chaperones is exemplified by their emerging implications in a variety of diseases, including cancer [4, 5], neurodegeneration [6] or viral infection [7, 8]. As such they have gained significant interest recently as potential drug targets. The importance of these chaperones in the life cycle of such a wide range of viruses suggests the potential of these proteins as targets for broad-spectrum antivirals

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call