Abstract
Recommender systems (RSs) provide the personalized recommendations to users for specific items in a wide range of applications such as e-commerce, media recommendations and social networking applications. Collaborative Filtering (CF) and Content Based (CB) Filtering are two methods which have been employed in implementing the recommender systems. CF suffers from Cold Start (CS) problem where no rating records (Complete Cold Start CSS) or very few records (Incomplete Cold Start ICS) are available for newly coming users and items. The performance of CB methods relies on good feature extraction methods so that the item descriptions can be used to measure items similarity as well as for user profiling. This paper addresses the CS problem by providing a novel way of integrating content embeddings in CF. The proposed algorithm (HRS-CE) generates the user profiles that depict the type of content in which a particular user is interested. The word embedding model (Word2Vec) is used to produce distributed representation of items descriptions. The higher representation for an item description, obtained using content embeddings, are combined with similarity techniques to perform rating predictions. The proposed method is evaluated on two public benchmark datasets (MovieLens 100k and MovieLens 20M). The results demonstrate that the proposed model outperforms the state of the art recommender system models for CS items.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.