Abstract

According to current guidelines, the intensity of health-enhancing aerobic exercise should be prescribed using a percentage of heart rate reserve (%HRR), which is considered to be more closely associated (showing a 1:1 relation) with the percentage of oxygen uptake reserve (%V˙O2R) rather than with the percentage of maximal oxygen uptake (%V˙O2max) during incremental exercise. However, the associations between %HRR and %V˙O2R and between %HRR and %V˙O2max are under debate; hence, their actual relationships were investigated in this study. Data from each stage of a maximal incremental exercise test performed by 737 healthy and physically inactive participants of the HERITAGE Family Study were screened and filtered then used to calculate the individual linear regressions between %HRR and either %V˙O2R or %V˙O2max. For each relationship, the mean slope and intercept of the individual linear regression were compared with 1 and 0 (i.e., the identity line), respectively, using one-sample t-tests. The individual root mean square errors of the actual versus the 1:1 predicted %HRR were calculated for both relationships and compared using a paired-sample t-test. The mean slopes (%HRR-%V˙O2R, 0.972 ± 0.189; %HRR-%V˙O2max, 1.096 ± 0.216) and intercepts (%HRR-%V˙O2R, 8.855 ± 16.022; %HRR-%V˙O2max, -3.616 ± 18.993) of both relationships were significantly different from 1 and 0, respectively, with high interindividual variability. The average root mean square errors were high and revealed that the %HRR-%V˙O2max relationship was more similar to the identity line (P < 0.001) than the %HRR-%V˙O2R relationship (7.78% ± 4.49% vs 9.25% ± 5.54%). Because both relationships are different from the identity line and using a single equation may not be appropriate to predict exercise intensity at the individual level, a rethinking of the relationships between the intensity variables may be necessary to ensure that the most suitable health-enhancing aerobic exercise intensity is prescribed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.