Abstract

Human papillomavirus (HPV) has been identified as the primary cause of cervical squamous intraepithelial lesion and invasive cervical cancer. The emergence of various commercial HPV genotyping kits with different characteristics facilitates the detection of most high-risk and low-risk HPV genotypes, but the rare HPV types are usually underdiagnosed. In the present study, HPV detection was performed using the GenoFlow HPV Array Test kit (DiagCor Bioscience), which can identify 33 HPV subtypes by specific probes. Besides, a HPV consensus probe (universal probe) was designed to capture not only the 33 genotypes but also rare subtypes. Of the 1643 Southern Chinese women tested between 2012 and 2013, the HPV prevalence was 42.3%, with HPV 52 (139/1643, 8.5%), HPV 81 (89/1643, 5.4%), and HPV 16 (63/1643, 3.8%) being the most frequent subtypes detected. Among all 695 HPV-positive cases, 56 (8.1%) cases were only detected by the universal probe, in which 5 were either ASCUS or LSIL cases. Sequencing results confirmed HPV types 30, 91, and 74, and the intratypic variants of HPV 72 and 82 were present in the 5 cases. The result suggests that some rare HPV subtypes might be involved in cervical lesions.

Highlights

  • Human papillomavirus (HPV) infection is the most common sexually transmitted infection worldwide

  • A recent study using PCR with MY09/11 degenerate primers followed by direct sequencing that showed 9.47% prevalence of rare HPV types in cervical lesions

  • Based on the cytological results, 1505 (91.6%, 1505/1643) samples were normal with no intraepithelial lesion or malignancy, 91 (5.5%) were atypical squamous cells of undetermined significance (ASCUS), 41 (2.5%) were low-grade squamous intraepithelial lesions (LSIL), and 6 (0.36%) were high-grade squamous intraepithelial lesions (HSIL)

Read more

Summary

Introduction

Human papillomavirus (HPV) infection is the most common sexually transmitted infection worldwide. The Linear Array HPV Genotyping (Roche Molecular Diagnostics, Branchburg, NJ, USA) and the InnoLiPA HPV Genotyping (Innogenetics, Belgium) are based on the amplification of HPV L1 gene followed by reverse line-blot hybridization to detect 37 and 28 HPV types, respectively. All these assays are designed to detect only the most frequent and defined high-risk and low-risk HPV subtypes. In order to detect more rare HPV subtypes, GeneFlow HPV array Test kit utilized a set of degenerated PGMY primers to amplify the L1 gene of HPV followed by proprietary flow-through hybridization and captured by using a universal probe with consensus sequence of HPV. A result is valid only when there are signals at the hybridization control (HC) and the amplification control (AC) [10]

Materials and Methods
Results and Discussions
Conclusions
Conflict of Interests
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call