Abstract
Research into unsupervised ways of stemming has resulted, in the past few years, in the development of methods that are reliable and perform well. Our approach further shifts the boundaries of the state of the art by providing more accurate stemming results. The idea of the approach consists in building a stemmer in two stages. In the first stage, a stemming algorithm based upon clustering, which exploits the lexical and semantic information of words, is used to prepare large-scale training data for the second-stage algorithm. The second-stage algorithm uses a maximum entropy classifier. The stemming-specific features help the classifier decide when and how to stem a particular word.In our research, we have pursued the goal of creating a multi-purpose stemming tool. Its design opens up possibilities of solving non-traditional tasks such as approximating lemmas or improving language modeling. However, we still aim at very good results in the traditional task of information retrieval. The conducted tests reveal exceptional performance in all the above mentioned tasks. Our stemming method is compared with three state-of-the-art statistical algorithms and one rule-based algorithm. We used corpora in the Czech, Slovak, Polish, Hungarian, Spanish and English languages. In the tests, our algorithm excels in stemming previously unseen words (the words that are not present in the training set). Moreover, it was discovered that our approach demands very little text data for training when compared with competing unsupervised algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.