Abstract

Purpose The aim of this study was to investigate uremia-related high-performance liquid chromatography (HPLC) ultraviolet (UV) absorbance profiles of serum and spent dialysate and to study the removal of uremic retention solutes in connection with optical dialysis adequacy monitoring. Methods 10 uremic patients were investigated using online spectrophotometry at a wavelength of 280 nm over the course of 30 hemodialysis treatments. The dialysate and blood samples were taken and analyzed simultaneously using standard biochemical methods and reversed-phase HPLC. Filters with cutoff at 3 kDa and 70 kDa were used for the pre-treatment of the serum. The chromatographic peaks were detected by a UV detector at wavelengths of 254 and 280 nm. Results This study indicated that the main solute responsible for UV absorbance in the spent dialysate is a low-molecular-weight, water-soluble, non-protein-bound compound uric acid (UA). Three additional uremic retention solutes – creatinine (CR), indoxyl sulphate (IS) and hippuric acid (HA) – were identified from the HPLC profiles. The number of detected HPLC peaks was not significantly different for a serum filtered through the 3 kDa or 70 kDa cutoff filters, and was lower for the spent dialysate, indicating that the molecular weight (MW) of the main UV chromophores in the uremic fluids did not exceed 3 kDa. The reduction ratio (RR) estimated by the total area of HPLC peaks at 254 nm and 280 nm in the serum and by the online UV absorbance at 280 nm was best related to the removal of small water-soluble non-protein bound solutes like urea (UR), CR and UA. Conclusions The present study contributes new information on the removal of uremic retention solutes during hemodialysis and on the origin of the optical dialysis adequacy monitoring signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call