Abstract

Three methods are developed for the simultaneous determination of diprophylline (DP), phenobarbitone (PH) and papaverine hydrochloride (PP). The chromatographic method depends on a high performance liquid chromatographic (HPLC) separation on a reversed-phase C18 column with a mobile phase consisting of 0.02 M potassium dihydrogen phosphate, pH 3.5—acetonitrile (55:45 v/v). Quantitation was achieved with UV detection at 210 nm based on peak area. The other two chemometric methods applied were principal component regression (PCR) and partial least squares (PLS-1). These approaches were successfully applied to quantify the three drugs in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range 215–245 nm with the intervals Δ λ = 0.2 nm. The calibration PCR and PLS-1 models were evaluated by internal validation (prediction of compounds in its own designed training set of calibration), by cross-validation (obtaining statistical parameters that show the efficiency for a calibration fit model) and by external validation over laboratory-prepared mixtures and pharmaceutical preparations. The PCR and PLS-1 methods require neither any separation step, nor any priori graphical treatment of the overlapping spectra of the three drugs in a mixture. The results of PCR and PLS-1 methods were compared with HPLC method obtained in pharmaceutical formulation and a good agreement was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call