Abstract
The performance of Volt/VAr optimization has been significantly improved due to the integration of measurement data obtained from the advanced metering infrastructure of a smart grid. However, most of the existing works lack: 1) realistic unbalanced multi-phase distribution system modeling; 2) scalability of the Volt/VAr algorithm for larger test system; and 3) ability to handle gross errors and noise in data processing. In this paper, we consider realistic distribution system models that include unbalanced loadings and multi-phased feeders and the presence of gross errors such as communication errors and device malfunction, as well as random noise. At the core of the optimization process is an intelligent particle swarm optimization-based technique that is parallelized using high performance computing technique to solve Volt/VAr-based power loss minimization problem. Extensive experiments covering the different aspects of the proposed framework show significant improvement over existing Volt/VAr approaches in terms of both the accuracy and scalability on IEEE 123 node and a larger IEEE 8500 node benchmark test systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have