Abstract
Bilateral training systems look to promote the paretic hand's use in individuals with hemiplegia. Although this is normally achieved using mechanical coupling (i.e., a physical connection between the hands), a virtual reality system relying on virtual coupling (i.e., through a shared virtual object) would be simpler to use and prevent slacking. However, it is not clear whether different coupling modes differently impact task performance and effort distribution between the hands. We explored how 18 healthy right-handed participants changed their motor behaviors in response to the uninstructed addition of mechanical coupling, and virtual coupling using a shared cursor mapped to the average hands' position. In a second experiment, we then studied the impact of connection stiffness on performance, perception, and effort imbalance. The results indicated that both coupling types can induce the hands to actively contribute to the task. However, the task asymmetry introduced by using a cursor mapped to either the left or right hand only modulated the hands' contribution when not mechanically coupled. The tracking performance was similar for all coupling types, independent of the connection stiffness, although the mechanical coupling was preferred and induced the hands to move with greater correlation. These findings suggest that virtual coupling can induce the hands to actively contribute to a task in healthy participants without hindering their performance. Further investigation on the coupling types' impact on the performance and hands' effort distribution in patients with hemiplegia could allow for the design of simpler training systems that promote the affected hand's use.NEW & NOTEWORTHY We showed that the uninstructed addition of a virtual and/or a mechanical coupling can induce both hands to actively contribute in a continuous redundant bimanual tracking task without impacting performance. In addition, we showed that the task asymmetry can only alter the effort distribution when the hands are not connected, independent of the connection stiffness. Our findings suggest that virtual coupling could be used in the development of simpler VR-based training devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.