Abstract
We present the authors' new theory of the RT-equations ('regularity transformation' or 'Reintjes-Temple' equations), nonlinear elliptic partial differential equations which determine the coordinate transformations which smooth connections Γ to optimal regularity, one derivative smoother than the Riemann curvature tensor Riem(Γ). As one application we extend Uhlenbeck compactness from Riemannian to Lorentzian geometry; and as another application we establish that regularity singularities at general relativistic shock waves can always be removed by coordinate transformation. This is based on establishing a general multi-dimensional existence theory for the RT-equations by application of elliptic regularity theory in L p spaces. The theory and results announced in this paper apply to arbitrary L ∞ connections on the tangent bundle of arbitrary manifolds , including Lorentzian manifolds of general relativity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.