Abstract

Intermittence and fluctuation of renewable energy increase the cost of real-time balance of power supply and demand, which will affect the stability of the power grid. How to design the incentive mechanism to increase the flexibility of the distributed energy system and reduce the cost of real-time supply–demand balance is an urgent problem to be solved. In this study, from the perspective of the demand side actively matching the supply side, a virtual real-time electricity price optimization model based on the credit mechanism is proposed. We use the linear decreasing inertia weight particle swarm optimization algorithm to optimize the user's electricity price and realize the minimization of the total electricity cost. The influence of the virtual real-time electricity price incentive mechanism on the matching degree between the power load curve and the distributed energy output curve is also studied. Moreover, a novel index is put forward to quantitatively measure the matching degree between users’ power load curve and distributed energy output curve. Taking a multi-microgrid system in a China’s industrial park as the case, we have found the results that the virtual real-time electricity price optimization model can not only reduce users’ total power cost by 7.8108%, but also improve the matching degree between the demand side and the supply side by 2.4643%. The new demand response incentive mechanism we have presented in this paper may promote the effective utilization of distributed energy and reduce the impact of renewable energy on power grid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call