Abstract
We consider the problem faced by a robot that must explore and learn an unknown room with obstacles in it. We seek algorithms that achieve a bounded ratio of the worst-case distance traversed in order to see all visible points of the environment (thus creating a map), divided by the optimum distance needed to verify the map, if we had it in the beginning. The situation is complicated by the fact that the latter off-line problem (the problem of optimally verifying a map) is NP-hard. Although we show that there is no such “competitive” algorithm for general obstacle courses, we give a competitive algorithm for the case of a polygonal room with a bounded number of obstacles in it. We restrict ourselves to the rectilinear case, where each side of the obstacles and the room is parallel to one of the coordinates, and the robot must also move either parallel or perpendicular to the sides. (In a subsequent paper, we will discuss the extension to polygons of general shapes.) We also discuss the off-line problem for simple rectilinear polygons and find an optimal solution (in the L 1 metric) in polynomial time, in the case where the entry and the exit are different points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.