Abstract

Because of their exceptionally high specific energy, aprotic lithium oxygen (Li-O2) batteries are considered as potential future energy stores. Their practical application is, however, still hindered by the high charging overvoltages and detrimental side reactions. Recently, the use of redox mediators dissolved in the electrolyte emerged as a promising tool to enable charging at moderate voltages. The presented work advances this concept and distinctly improves capacity and cycling stability of Li-O2 batteries by combining high redox mediator concentrations with a solid electrolyte (SE). The use of high redox mediator concentrations significantly increases the discharge capacity by including the oxidation and reduction of the redox mediator into charge cycling. Highly efficient cycling is achieved by protecting the lithium anode with a solid electrolyte, which completely inhibits unfavored deactivation of oxidized species at the anode. Surprisingly, the SE also suppresses detrimental side reactions at the carbon electrode to a large extent and enables stable charging completely below 4.0 V over a prolonged period. It is demonstrated that anode and cathode communicate deleteriously via the liquid electrolyte, which induces degradation reactions at the carbon electrode. The separation of cathode and anode with a SE is therefore considered as a key step toward stable Li-O2 batteries, in conjunction with a concentrated redox mediator electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call