Abstract
Carsten Thomassen in 1989 conjectured that if a graph has minimum degree much more than the number of atoms in the universe (δ(G)≥101010), then it contains a pillar, which is a graph that consists of two vertex-disjoint cycles of the same length, s say, along with s vertex-disjoint paths of the same length3 which connect matching vertices in order around the cycles. Despite the simplicity of the structure of pillars and various developments of powerful embedding methods for paths and cycles in the past three decades, this innocent looking conjecture has seen no progress to date. In this paper, we give a proof of this conjecture by building a pillar (algorithmically) in sublinear expanders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.