Abstract

In this article, we discuss challenges and strategies for evaluating natural language interfaces (NLIs) for data visualization. Through an examination of prior studies and reflecting on own experiences in evaluating visualization NLIs, we highlight benefits and considerations of three task framing strategies: Jeopardy-style facts, open-ended tasks, and target replication tasks. We hope the discussions in this article can guide future researchers working on visualization NLIs and help them avoid common challenges and pitfalls when evaluating these systems. Finally, to motivate future research, we highlight topics that call for further investigation including development of new evaluation metrics, and considering the type of natural language input (spoken versus typed), among others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.