Abstract
Terrestrial translation of biomedical advances is insufficient justification for lunar exploration. However, terrestrial translation should be viewed as a critical part of the cycle of mission planning, execution and review, both in terms of the progress of space exploration, but also of sustained life on Earth. Thus, both the mission and its potential to benefit mankind are increased by the adoption of human-based exploration of the lunar surface. Whilst European biomedical sciences have grown in stature, there remains a gap between space biomedical science and terrestrial medical application. As such, an opportunity for the UK to take a sustainable leadership role exists by utilising its biomedical science community, socialised health care system (National Health Service) and defined mechanisms to determine the clinical efficacy and cost-effectiveness upon health and wellbeing (i.e. National Institute Clinical Excellence), aiding the difficult process of health care rationing. By focusing upon exploitation of the more scientifically rewarding, potentially long-term and more terrestrially analogous challenge of lunar habitation, the UK would circumnavigate the current impediments to International Space Station utilisation. Early engagement in lunar exploration would promote the UK, and its adoption of a leadership role incorporating a considered approach to the development of space biomedicine with an eye to its terrestrial value. For instance, prolonged lunar habitation could provide an ‘ideal controlled environment’ for investigation of medical interventions, in particular multiple interactions (e.g. between exercise and nutrition), a model of accelerated aging and a number of chronic pathologies, including those related to disuse. Lunar advances could provide a springboard for individualized medicine, insights into occupational and de-centralised medicine (e.g. telemedicine) and act as a stimulus for biomedical innovation and understanding. Leadership in biomedical science activities would retain mission critically (and thus avoid obsolesce) so long as a human is involved (irrespective of specific mission architecture) and could be used to leverage opportunities for UK-based institutions, companies and individuals, most notably current ESA astronaut candidate Major Tim Peake. A combination of ESA engagement and national support for space biomedical sciences via research councils (e.g. Medical Research Council) could facilitate a virtuous circle of investment, advancement and socio-economic return invigorating the NHS, education, and key research initiatives such as ESA Harwell, UK Centre for Medical Research and Innovation, and the newly instigated Academic Health Science Centres. Such a strategy could also boost private space enterprise within the UK including the creation of a space port and could help retain the UK’s position as a European aerospace transportation, services and legislative hub. By focusing upon its biomedical strength within a multi-faceted but co-ordinated strategy of engagement, the UK could reap significant socio-economic benefits for the UK and its citizens, be they on the Moon, or the Earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.