Abstract
How tethered probes report dynamics of host polymers near the glass transition was investigated by changing the length of the flexible linkers and the number of tethering points via imaging rotational fluorescence correlation microscopy and compared with free probes of different sizes. The results show that tethering did not alter the temperature-dependence of polymer dynamics and the shape of the correlation decay reported by the probe; however, the rotation slowed down up to ≈1 decade when both ends of the probe were restricted with short alkyl chain linkers. Upon comparison with the bigger free probe, the mechanism of the slowdown was attributed to the restricted motion upon tethering for tethered probes compared to averaging over different regions of the dynamic heterogeneity for the bigger probe. If the size of the probe was comparable to that of the dynamic heterogeneity of the system, tethered probes accurately report dynamics relevant to glass transition, regardless of tethering conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.