Abstract

The axial temperature profile of a packed bed is often measured by thermocouples placed either directly in the bed or inside a thermowell centered in the reactor tube. Quantifying the impact of the thermocouple well on fluid flow, heat transport, and consequently on the measured temperatures is still an unresolved challenge for lab-scale reactors but especially, and even more so for multitubular reactors in industry. Particle-resolved computational fluid dynamics (PRCFD) simulations are a suitable approach to investigate the changes in transport phenomena exerted by inserting thermocouple wells into packed beds because they take into account the local packed bed structures. In this study, PRCFD simulations are performed based on design of simulation experiments (DoSE). The effect of the thermowell diameter and its thermal conductivity on the deviations between packed beds with and without thermowells is statistically quantified for characteristic integral quantities like pressure drop and tube wall-bed Nusselt number. The axial temperature profiles inside the thermowells can be computed efficiently with reasonably accuracy applying the Nusselt number correction as derived in this study from the DoSE in a one-dimensional pseudo-homogeneous energy balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call