Abstract
Although numerous white dwarf stars host dusty debris disks, the temperature distribution of these stars differs significantly from the white dwarf population as a whole. Dusty debris disks exist exclusively around white dwarfs cooler than 27,000 K. This is all the more enigmatic given that the formation processes of dusty debris disks should favor younger, hotter white dwarfs, which likely host more dynamically unstable planetary systems. Here we apply a sophisticated material sublimation model to white dwarf systems to show that these statistics are actually a natural result of the interplay of thermal and tidal forces, and show how they define the circumstellar regions where dusty debris disks can form. We demonstrate that these processes tend to prevent stability against both sublimative destruction and reaccretion into planetesimals for rocky materials until white dwarfs cool to below ~25,000-32,000 K, in agreement with the observed limit of ~27,000 K. For pure water ice, this critical temperature is less than 2,700 K (requiring a cooling age older the universe); this precludes pure water ice-rich debris disks forming through the accepted two-step mechanism. The critical temperature is size-dependent; more massive white dwarfs could potentially host dusty debris disks at warmer temperatures.. Our model suggests that the location of the disks within the PG 0010+280, GD 56, GD 362, and PG 1541+651 systems are consistent with a forsterite-dominated olivine composition. We also find that very cool white dwarfs may simultaneously host multiple, independently formed dusty debris disks, consistent with observations of the LSPM J0207+3331 system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have