Abstract

We used a two-species simulation model to study mechanisms of coexistence of annual plants in patchy habitats with local disturbances. In habitats with nested scales of patchiness, short dispersal is advantageous because favorable habitat tends to be aggregated. The invasion of a resident population with short dispersal distance by a species with longer-range dispersal was simulated for combinations of habitat pattern, disturbance frequency and germination strategies. A germination strategy was defined by the type of response to disturbance (disturbance-broken when disturbances trigger germination, risk-spreading when germination is insensitive to disturbance) and the dormancy fraction at dispersal. Simulations estimated the long-term low-density growth rate of the invader, the mean local crowding (number of competing seeds per invader seed at each site) and the effective fecundity of each species (the mean number of seeds successfully dispersed per adult plant). Crowding increased with habitat suitability and decreased with increasing dormancy fractions for the resident. Effective fecundity in a landscape can be taken as a measure of competitive ability. The short-dispersing resident invariably had higher effective fecundity, but this difference decreased with increasing suitability, i.e. competitive differences decreased. Coexistence depended on both habitat suitability and disturbance frequency. Maximum coexistence was obtained for habitats of intermediate suitability with moderately frequent disturbances. General linear modelling of the long-term low-density growth rate showed that coexistence results from a reduction in local crowding. This growth rate also increased for increasing habitat suitability and connectivity, and for a higher dormancy fraction of the resident species. The effects of disturbance frequency and of invader's dormancy fraction depended on the type of dormancy of the resident species. The analysis showed that 2 different mechanisms are involved in the coexistence of species with different niches. Differences in regeneration niches permit coexistence through competitive equivalency with trade-offs between dispersal and germination traits, but for a limited range of habitat pattern and disturbance conditions. On the other hand, coexistence through density fluctuations of a disturbance-broken species and storage effects can be achieved for a broad range of environmental conditions and species germination strategies. Species coexistence thus results from the combination of two mechanisms. Evidence from natural communities is discussed. Our results also demonstrate the importance of detailed attention to spatial patterns and dispersal because of the complexity of spatial effects. Further, spatial pattern and disturbance frequencies need to be considered jointly to understand the dynamics of diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call