Abstract

This study focuses on the retting effect on the mechanical properties of flax biobased materials. For the technical fiber, a direct link was established between the biochemical alteration of technical flax and their mechanical properties. In function of the retting level, technical fibers appeared smoother and more individualized; nevertheless, a decrease in the ultimate modulus and maximum stress was recorded. A biochemical alteration was observed as the retting increased (a decrease in the soluble fraction from 10.4 ± 0.2 to 4.5 ± 1.2% and an increase in the holocellulose fractions). Regarding the mechanical behavior of biocomposites manufactured by thermocompression, a non-elastic behavior was observed for the tested samples. Young moduli (E1 and E2) gradually increased with retting. The retting effect was more pronounced when a normalization was performed (according to the fiber volume and porosity). A 40% increase in elastic modulus could be observed between under-retting (-) and over-retting (+). Moreover, the porosity content (Vp) increased overall with fiber content. Setup 3, with optimized processing parameters, was the most desirable processing protocol because it allowed the highest fiber fraction (Vf) for the lowest Vp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.