Abstract

Cardiac physiological synchrony is regarded as an important component of social interaction due to its putative role in prosocial behaviour. Yet, the processes underlying physiological synchrony remain unclear. We aim to investigate these processes. 20 dyads (19 men, 21 women, age range 18–35) engaged in a self-paced interpersonal tapping synchronization task under different levels of tapping synchrony due to blocking of sensory communication channels. Applying wavelet transform coherence analysis, significant increases in heart rate synchronization from baseline to task execution were found with no statistically significant difference across conditions. Furthermore, the control analysis, which assessed synchrony between randomly combined dyads of participants showed no difference from the original dyads’ synchrony. We showed that interindividual cardiac physiological synchrony during self-paced synchronized finger tapping resulted from a task-related stimulus equally shared by all individuals. We hypothesize that by applying mental effort to the task, individuals changed into a similar mental state, altering their cardiac regulation. This so-called psychophysiological mode provoked more uniform, less variable fluctuation patterns across all individuals leading to similar heart rate coherence independent of subsequent pairings. With this study, we provide new insights into cardiac physiological synchrony and highlight the importance of appropriate study design and control analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.