Abstract

We combine ultrafast electron diffraction and time-resolved terahertz spectroscopy measurements to link structure and electronic transport properties during the photoinduced insulator-metal transitions in vanadium dioxide. We determine the structure of the metastable monoclinic metal phase, which exhibits antiferroelectric charge order arising from a thermally activated, orbital-selective phase transition in the electron system. The relative contribution of the photoinduced monoclinic and rutile metals to the time-dependent and pump-fluence-dependent multiphase character of the film is established, as is the respective impact of these two distinct phase transitions on the observed changes in terahertz conductivity. Our results represent an important example of how light can control the properties of strongly correlated materials and demonstrate that multimodal experiments are essential when seeking a detailed connection between ultrafast changes in optical-electronic properties and lattice structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.