Abstract

The initial stages of the heterogeneous photoreduction of quinone species by self-assembled porphyrin ion pairs at the water|1,2-dichloroethane (DCE) interface have been studied by ultrafast time-resolved spectroscopy and dynamic photoelectrochemical measurements. Photoexcitation of the water-soluble ion pair formed by zinc meso-tetrakis(p-sulfonatophenyl)porphyrin (ZnTPPS(4)(-)) and zinc meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP(4+)) leads to a charge-separated state of the form ZnTPPS(3)(-)-ZnTMPyP(3+) within 40 ps. This charge-separated state is involved in the heterogeneous electron injection to acceptors in the organic phase in the microsecond time scale. The heterogeneous electron transfer manifests itself as photocurrent responses under potentiostatic conditions. In the case of electron acceptors such as 1,4-benzoquinone (BQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and tetrachloro-1,4-benzoquinone (TCBQ), the photocurrent responses exhibit a strong decay due to back electron transfer to the oxidized porphyrin ion pair. Interfacial protonation of the radical semiquinone also contributes to the photocurrent relaxation in the millisecond time scale. The photocurrent responses are modeled by a series of linear elementary steps, allowing estimations of the flux of heterogeneous electron injection to the acceptor species. The rate of electron transfer was studied as a function of the thermodynamic driving force, confirming that the activation energy is controlled by the solvent reorganization energy. This analysis also suggests that the effective redox potential of BQ at the liquid|liquid boundary is shifted by 0.6 V toward positive potentials with respect to the value in bulk DCE. The change of the redox potential of BQ is associated with the formation of hydrogen bonds at the liquid|liquid boundary. The relevance of this approach toward modeling the initial processes in natural photosynthetic reaction centers is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call