Abstract

We accurately measured the conductance responsible for the afterhyperpolarization (medium AHP) that follows a single spike in spinal motoneurons of anesthetized cats. This was done by using the dynamic-clamp method. We injected an artificial current in the neurons that increased the AHP amplitude, and we made use of the fact that the intensity of the natural AHP current at the trough of the voltage trajectory was related linearly to the AHP amplitude. We determined at the same time the conductance and the reversal potential of the AHP current. This new method was validated by a simple theoretical model incorporating AHP and hyperpolarization-activated (Ih) currents and could be applied when the decay time constant of the AHP conductance was at least five times shorter than the estimated Ih activation time. This condition was fulfilled in 33 of 44 motoneurons. The AHP conductance varied from 0.3 to 1.4 microS in both slow- and fast-type motoneurons, which was approximately the same range as the input conductance of the entire population. However, AHP and input conductances were not correlated. The larger AHP in slow-type motoneurons was mainly attributable to their smaller input conductance compared with fast motoneurons. The likeness of the AHP conductance in both types of motoneurons is in sharp contrast to differences in AHP decay time and explains why slow- and fast-type motoneurons have similar gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call