Abstract

Motoneuron afterhyperpolarization (AHP) amplitude and somatic input conductance were monitored during pharmacologically induced, locomotor-like ventral root activity using an isolated neonatal rat spinal cord preparation (transected at the C1 level). Nonspontaneously firing motoneurons were selected for study. Single spikes were evoked at regular intervals by brief depolarizing current pulse injections, while somatic input conductance was monitored by hyperpolarizing current pulses. The induction of rhythmic ventral root activity was associated with tonic depolarization of motoneurons as well as superimposed rhythmically alternating membrane depolarization and hyperpolarization (locomotor drive potentials, LDPs). In 9 of 13 trials (six of eight cells) the peak amplitude of AHPs following current-evoked action potentials was reduced during both the hyperpolarized and the depolarized phases of the LDP, compared with the pre-locomotor condition. The peak AHP amplitude increased during the depolarized phase of the LDP in 4 of 13 trials (three of eight cells); however, in 3 of these 4 trials measurement of the AHP later in the course of its trajectory, using a half decay time (HDt) reference point, demonstrated AHP amplitude reduction during rhythmic activity compared with the pre-locomotor condition. In seven of eight motoneurons the induction of rhythmic activity was associated with a decrease in input conductance. The pattern of AHP amplitude and conductance modulation during the two phases of the LDP was consistent for individual trials; however, there was considerable intertrial variation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call