Abstract

Metallicity of nanoparticles can be defined in different ways. One possibility is to look at the degree to which external fields are screened inside the object. This screening would be complete in a classical perfect metal where surface charges arrange on the classical -i.e., abrupt - surface such that no internal fields exist. However, it is obvious that this situation is modified for very small clusters: the surface charges are "smeared out" at the surface, and the screening might be less complete. In the present work we ask the question as to how close small noble-metal clusters are to a classical metal. We show that, indeed, the screening is almost complete (≈96%) already for as little as one atomic layer of the coinage metals, silver and gold alike. At the same time, we show that quantum effects, viz., electronic shell closings and the Friedel-like oscillations of the density, play a role, meaning that the clusters cannot be described solely using the concept of screening in a classical metal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call